
R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-1

MEMORY SYSTEMS

•CHAPTER X

CHAPTER X

MEMORY SYSTEMS

READ MEMORY NOTES ON COURSE WEBPAGE

CONSIDER READING PAGES 285-310 FROM MANO AND KIME
OTHER USEFUL RAM MATERIAL AT ARS TECHNICA

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-2

MEMORY SYSTEMS
INTRODUCTION

MEMORY SYSTEMS

•MEMORY SYSTEMS
-INTRODUCTION

• A number of different types of memories and programmable logic devices

exist.

• Random-access memory (RAM)

• Read-only memory (ROM)

• Programmable logic devices (PLDs)

• Programmable logic arrays (PLAs)

• Programmable array logic (PAL)

• Programmable gate arrays (PGAs)

• Programmable sequential arrays (PSAs)

• Field-programmable gate arrays (FPGAs)

• Due to time limitations, we will only cover RAM.

Two-level combinational
networks

Multi-level

combinationalTwo-level
and sequential
networks

Memories

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-3

MEMORY SYSTEMS
TYPES OF RAM

MEMORY SYSTEMS

•MEMORY SYSTEMS
-INTRODUCTION

• Two main categories of random-access memory (RAM) exist.

• Static memory or static RAM (SRAM)

• Information bits are latched such as with a latch or a flip-flop.

• Typical SRAM implementations require 4 to 6 transistors.

• Dynamic memory or dynamic RAM (DRAM)

• Information bits are stored in the form of electric charges on

capacitors.

• The capacitors will discharge over time.

• Refreshing the memory cell is required before the capacitor has

discharged to much of the electric charge.

• Most DRAM implementations use 1 transistor and 1 capacitor.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-4

STATIC RAM
SRAM CELLS (1)

MEMORY SYSTEMS

•MEMORY SYSTEMS
-INTRODUCTION
-TYPES OF RAM

• An inefficient SRAM bit cell can be formed as follows.

• How many transistors required for this design?

• 2*4 for inverters + 2*2 for TGs = 12 transistors.

• Very expensive in terms of silicon real estate!!!

Select (word line)

DD

TGTG

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-5

STATIC RAM
SRAM CELLS (2)

MEMORY SYSTEMS

•MEMORY SYSTEMS
•STATIC RAM

-SRAM CELLS

• The structure for a 6 transistor implementation of an SRAM 1-bit cell is as

follows. (We will refer to this as the “6T” design)

• The select, or word line, chooses the bit cell when high.

• When selected, the new / is latched into the feedback loop.

Select (word line)

DD

6T design

D D

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-6

STATIC RAM
SRAM CELLS (3)

MEMORY SYSTEMS

•MEMORY SYSTEMS
•STATIC RAM

-SRAM CELLS

• Of course, the previous SRAM cell structure can be drawn as follows,

replacing each inverter with 2 transistors.

Select (word line)

DD

6T design

VDD

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-7

STATIC RAM
SRAM CELLS (4)

MEMORY SYSTEMS

•MEMORY SYSTEMS
•STATIC RAM

-SRAM CELLS

• A 4 transistor design for an SRAM bit cell is as follows.

• Notice replacement of pMOS transistors with load resistors.

• This is for your own information. We won’t be testing on the 4T design.

Select (word line)

DD

4T design

VDD

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-8

DYNAMIC RAM
DRAM CELLS (1)

MEMORY SYSTEMS

•MEMORY SYSTEMS
•STATIC RAM

-SRAM CELLS

• A dynamic RAM cell stores the bit as a charge in a capacitor.

• This bit must be refreshed periodically (>100s of times a second).

• How many transistors required for this design?

• 2*1 for TG and 2*1 for inverter = 4 transistors.

• Still expensive considering the extra refresh circuitry required!

Select (word line)

D

TG

Transmission gate opens
when selected to charge
or discharge capacitor.

This charge stores the bit.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-9

DYNAMIC RAM
DRAM CELLS (2)

MEMORY SYSTEMS

•MEMORY SYSTEMS
•STATIC RAM
•DYNAMIC RAM

-DRAM CELLS

• The capacitor charging structure can be simplified as follows.

• This structure for a DRAM bit cell is what is used in practice in real

implementations.

• Very little chip real estate is used!!!

Select (word line)

Transmission gate opens
when selected to charge
or discharge capacitor.

This charge stores the bit.

D

1T design

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-10

MEMORY UNITS
SPECIFICATION

MEMORY SYSTEMS

•MEMORY SYSTEMS
•STATIC RAM
•DYNAMIC RAM

-DRAM CELLS

• Having developed bit cells, either SRAM or DRAM bit cells, they can now

be pieced together forming a memory unit.

• What do we want to specify in the design of a memory unit?

• The number of bits.

• This gives the total number of bits that the memory unit can store.

• The grouping of bits into words.

• Accessing 1 bit at a time might be inconvenient, so, grouping bits

into words is often done.

• Common examples of word bit sizes are 4, 8, 16, 32, and 64.

• The number of words in the memory unit (addressable words).

• This is a function of the word size and total number of bits.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-11

MEMORY UNITS
DESCRIPTION

MEMORY SYSTEMS

•STATIC RAM
•DYNAMIC RAM
•MEMORY UNITS

-SPECIFICATION

• In describing the capacity of a memory unit, the following is used

• # addresses x word size

• Example: 1Mx8

• If a memory unit is described as 1Mx8, then it has

• addresses,

• 8 bits per word at each address location,

• 8 data lines for the 8 bit words,

• 20 address lines to specify the addresses,

• and bits in the entire memory unit.

1M 220 1048576= =

1M 220 1048576= =

1048576() 8() 8388608=

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-12

MEMORY UNITS
DESCRIPTION EXAMPLES

MEMORY SYSTEMS

•DYNAMIC RAM
•MEMORY UNITS

-SPECIFICATION
-DESCRIPTION

• Some further examples of memory descriptions are given below.

• Note that the last four columns are all described with the information in

the first column.

• Try to fill in the empy cells for the last two rows.

Memory Total bits # of addresses # address lines # data lines

1Mx8 8388608 1048576 20 8

1Kx4 4096 1024 10 4

2Mx4 8388608 2097152 21 4

4Mx1 4194304 4194304 22 1

2Mx32 67108864 2097152 21 32

16Kx64

8Mx8

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-13

MEMORY UNITS
BLOCK DIAGRAM (1)

MEMORY SYSTEMS

•MEMORY UNITS
-SPECIFICATION
-DESCRIPTION
-DESCRIPTION EXAMPLES

• Below is a general block diagram for a memory unit.

• The k address lines access a word in the memory for input or output.

• To simplify drawing, we now form buses of n (or k) lines.

Memory unit

2k words

n bits per word

Read
Write

k address lines

n data output lines

n data input lines

k

W
R

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-14

MEMORY UNITS
BLOCK DIAGRAM (2)

MEMORY SYSTEMS

•MEMORY UNITS
-DESCRIPTION
-DESCRIPTION EXAMPLES
-BLOCK DIAGRAM

• To conserve pins, the following layout is more common in practice.

• The data lines are both input and output lines (not simultaneously).

• This is done by using tristate buffers to form a tristate bus (or

sometimes referred to as a three-state bus).

Memory unit

2k words

n bits per word

Read/Write
Enable

k address lines

n data lines
(input and output)

k

CS
R/W

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-15

MEMORY UNITS
INTERNAL STRUCTURE

MEMORY SYSTEMS

•MEMORY UNITS
-DESCRIPTION
-DESCRIPTION EXAMPLES
-BLOCK DIAGRAM

• The bit cells are arranged in matrix. (more efficient!)

• Row and column decoders access specific bit cells.

R
ow

 D
ec

od
er

Column Decoder
Input

Bit Cell Matrix

OutputWriting
a bit

Reading
a bit

Accessed
bit

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-16

MEMORY UNITS
READ/WRITE OF 1-BIT

MEMORY SYSTEMS

•MEMORY UNITS
-DESCRIPTION EXAMPLES
-BLOCK DIAGRAM
-INTERNAL STRUCTURE

• In read mode:

• Row decoder “activates” all bit cells in that row.

• Each bit cell in the row outputs their stored bit.

• Column decoder takes the bit from only one column of the activated row.

• In write mode:

• Row decoder “activates” all bit cells in that row.

• Each bit cell in the row effectively outputs their stored bit.

• Column decoder selects the appropriate column and writes the input bit.

• SRAM: This writing is done by “overpowering” what is being read by

the bit cell with a stronger voltage/current.

• DRAM: This writing is done by recharging the capacitor for writing a

1 or discharging the capacitor for writing a 0.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-17

MEMORY UNITS
CONTROL LINES (1)

MEMORY SYSTEMS

•MEMORY UNITS
-BLOCK DIAGRAM
-INTERNAL STRUCTURE
-READ/WRITE OF BIT

• Now include k address lines, 1-bit data line, Enable, and ~Read/Write.

R
ow

 D
ec

od
er

Column Decoder
Input

Bit Cell Matrix

OutputTG TG

R/W

Enable

D

Address lines

Address lines

p

k-p

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-18

MEMORY UNITS
CONTROL LINES (2)

MEMORY SYSTEMS

•MEMORY UNITS
-INTERNAL STRUCTURE
-READ/WRITE OF BIT
-CONTROL LINES

• Things to note about the previous implementation.

• The k address lines are split into two parts (not necessarily equal parts)

• p of the k address lines are sent to the row decoder.

• k-p of the k address lines are sent to the column decoder.

• There is only one bit line for input/output, D.

• If we desire multiple bits, say n bits, for each address location, the

entire structure must be duplicated n times.

• The enable line, or often called chip select (CS), either allows the

transmission gates to be closed or prevents them from being closed.

This makes it so that the D can be in one of three modes;

• reading, writing, or high impedence.

• The ~read/write line controls which transmission gate is closed.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-19

MEMORY UNITS
BITS FOR ROWS/COLUMNS

MEMORY SYSTEMS

•MEMORY UNITS
-INTERNAL STRUCTURE
-READ/WRITE OF BIT
-CONTROL LINES

• In general, given a certain size memory chip, such as a 1Mx1 memory chip,

we would not know how the internal matrix is configured.

• For a 1Mx1 memory chip, we know it has 20 address lines (for our

purposes in any case, there are exceptions in the real world). Any

combination of address lines for the row and column decoder could be

used to form the matrix.

• Example: 10 row address lines and 10 column address lines for a

1024x1024 matrix of bit cells.

• Example: 12 row address lines and 8 column address lines for a

4096x256 matrix of bit cells.

• Example: 5 row address lines and 15 column address lines for a

32x32768 matrix of bit cells.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-20

MEMORY UNITS
MULTIPLE BITS (WORDS)

MEMORY SYSTEMS

•MEMORY UNITS
-READ/WRITE OF BIT
-CONTROL LINES
-# BITS FOR ROWS/COLS.

• As noted, the described internal bit cell matrix structure accesses only 1 bit

at a time.

• Multiple bits to form an n-bit word could be accessed in a few different

methods.

• One method is to have the column decoder select a set of n columns

simultaneously to form the word.

• This only works if the entire word is stored in one row. Hence, there

should be a multiple of n columns in the bit cell matrix.

• For instance, the given bit cell matrix with 8 columns could easily

have words of size 1, 2, 4, or 8.

• Another method, though arguably very similar, is to duplicate the entire

bit cell matrix n times to form the n-bit word.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-21

MEMORY UNITS
MULTIPLE BITS (WORDS)

MEMORY SYSTEMS

•MEMORY UNITS
-CONTROL LINES
-# BITS FOR ROWS/COLS.
-MULTIPLE BITS (WORDS)

• The following illustrates these approaches for accessing a 4-bit word.

• On the left, four column bits from the second row are selected to form

the 4-bit word.

• On the right, the first column bit from the second row for 4 duplicates

of the bit cell matrix are accessed to form the 4-bit word.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-22

BUILDING SYSTEMS
DESIGNING MEMORY SYSTEMS

MEMORY SYSTEMS

•MEMORY UNITS
-CONTROL LINES
-# BITS FOR ROWS/COLS.
-MULTIPLE BITS (WORDS)

• What if we don’t have the right type of memory chips to build a desired

computer system?

• Must learn to use combinations of existing memory chips to form a memory

system according to specifications.

• Example: We want a 1Mx8 memory system but can only cheaply buy

1Mx4 memory chips. What to do?

• Become Bill Gates so you can afford it.

• Get a better job.

• Go back to storing your valuable information on little pieces of paper

in your pocket. (be careful of washing machines!!!)

• Design a memory system that uses 1Mx4 memory chips but

logically forms a 1Mx8 memory system.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-23

BUILDING SYSTEMS
EXAMPLE #1

MEMORY SYSTEMS

•MEMORY UNITS
•BUILDING SYSTEMS

-DESIGNING MEMORY SYST.

• Build a 1Mx8 memory system using 1Mx4 memory chips.

• First identify the specifications for the 1Mx4 memory chips and the

desired 1Mx8 memory system?

• As the table shows, the # of addresses and # of address lines are the

same for both. So, we do not have to change that.

• The number of data lines for the 1Mx8 are double that of the 1Mx4 as

well as the total # of bits stored in the memory.

• Therefore, we require two 1Mx4 memory chips arranged with the

same address lines and concatenated data lines.

Memory Total bits # of addresses # address lines # data lines

1Mx8 8388608 1048576 20 8

1Mx4 4194304 1048576 20 4

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-24

BUILDING SYSTEMS
EXAMPLE #1

MEMORY SYSTEMS

•MEMORY UNITS
•BUILDING SYSTEMS

-DESIGNING MEMORY SYST.
-EXAMPLE #1

• Forming the described 1Mx8 memory system with 1Mx4 chips, the

following 1Mx8 memory system can be designed.

1MX4

1MX4

D4
D5
D6
D7

D0
D1
D2
D3

A19:A0

Enable
~R/W

R/W

CS
R/W

CS

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-25

BUILDING SYSTEMS
EXAMPLE #2

MEMORY SYSTEMS

•MEMORY UNITS
•BUILDING SYSTEMS

-DESIGNING MEMORY SYST.
-EXAMPLE #1

• Build a 2Mx4 memory system using 1Mx4 memory chips.

• First identify the specifications for the 1Mx4 memory chips and the

desired 2Mx4 memory system?

• As the table shows, the # of data lines are the same for both.

• There is an extra address line in the 2Mx4 giving double the # of

addresses and double the # of bits

• Therefore, we require two 1Mx4 memory chips arranged where one

address line is used to decode which 1Mx4 chip is enabled.

Memory Total bits # of addresses # address lines # data lines

2Mx4 8388608 2097152 21 4

1Mx4 4194304 1048576 20 4

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-26

BUILDING SYSTEMS
EXAMPLE #2

MEMORY SYSTEMS

•BUILDING SYSTEMS
-DESIGNING MEMORY SYST.
-EXAMPLE #1
-EXAMPLE #2

• The following implements the desired 2Mx4 using 1Mx4 memory.

• Notice that A20 is used to activate one of the 1Mx4 memory chips.

D0
D1
D2
D3

1-
to

-2
D

ec
od

er

0
1

20

E

A20

1MX4

1MX4

A19:A0

Enable

~R/W

R/W

CS
R/W

CS

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-27

MEMORY MODEL
PROGRAMMER’S MODEL

MEMORY SYSTEMS

•BUILDING SYSTEMS
-DESIGNING MEMORY SYST.
-EXAMPLE #1
-EXAMPLE #2

• Goal is to abstract the memory model so that a programmer of the system

does not need to know the physical layout of the memory.

• Below is an example addressable memory map of byte. This, for

instance, could be implemented with a 4Gx8 memory system.

232

0x430x00000000

0x78

0x12

0x04

0xFFFFFFFF 0x7c

0x00000001

0x00000002

0x00000003

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-28

MEMORY MODEL
ENDIAN BYTE ORDERING (1)

MEMORY SYSTEMS

•BUILDING SYSTEMS
•MEMORY MODEL

-PROGRAMMER’S MODEL

• How should a multiple byte word be stored?

• The two most common orderings are

• Big endian

• The address is of the most significant byte location.

• Sun Workstations and Macs use this ordering.

• Little endian

• The address is of the least significant byte location.

• Intel x86 architectures use this ordering.

• Origins of the terms big and little endian.

• Gulliver’s Travels: Feud between the two mythical islands, Lilliput and

Blefescu, over the correct end (big or little) at which to crack an egg.

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-29

MEMORY MODEL
ENDIAN BYTE ORDERING (2)

MEMORY SYSTEMS

•BUILDING SYSTEMS
•MEMORY MODEL

-PROGRAMMER’S MODEL
-ENDIAN BYTE ORDERING

• An example of a 4-byte word stored in big endian order

• 0x12345678 would be stored as

• An example of a 4-byte word stored in little endian order

• 0x12345678 would be stored as

0x120x10010000

0x34

0x56

0x78

0x10010001

0x10010002

0x10010003

12345678

0x780x10010000

0x56

0x34

0x12

0x10010001

0x10010002

0x10010003

78563412

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-30

MEMORY MODEL
ASSEMBLER DIRECTIVES

MEMORY SYSTEMS

•BUILDING SYSTEMS
•MEMORY MODEL

-PROGRAMMER’S MODEL
-ENDIAN BYTE ORDERING

• Let’s assume we have a memory system with 32 bit words using little

endian byte ordering.

• .word n10

• Store the value n10 in memory as a 32 bit word binary value.

• .byte n10

• Store the value n10 in memory as a byte value (8 bits).

• .asciiz “string”

• Store the ASCII string in memory with a null character.

• .space n10,

• Skip the next n bytes.

• .align k

• Force loader to go to next byte boundary.2k

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-31

MEMORY MODEL
EXAMPLE DIRECTIVE USE (1)

MEMORY SYSTEMS

•MEMORY MODEL
-PROGRAMMER’S MODEL
-ENDIAN BYTE ORDERING
-ASSEMBLER DIRECTIVES

• One example assembly memory directive set could be as follows.

.data

.word 24

.byte 7

.ascii “help”

0x180x10010000

0x00

0x00

0x00

0x070x10010004

0x68

0x65

0x6c

0x700x10010008

0x00

Assume loader starts
at 0x10010000

p

h

l
e

Notice null character
\0

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-32

MEMORY MODEL
EXAMPLE DIRECTIVE USE (2)

MEMORY SYSTEMS

•MEMORY MODEL
-ENDIAN BYTE ORDERING
-ASSEMBLER DIRECTIVES
-EXAMPLE DIRECTIVE USE

• Continuing with the previous example.

.align 2

.word 186548547

.byte 52

0x700x10010008

0x00

0x430x1001000C

0x81

0x1E

0x0B

0x340x10010010

p
\0

R.M. Dansereau; v.1.0

INTRO. TO COMP. ENG.
CHAPTER X-33

MEMORY MODEL
EXAMPLE DIRECTIVE USE (3)

MEMORY SYSTEMS

•MEMORY MODEL
-ENDIAN BYTE ORDERING
-ASSEMBLER DIRECTIVES
-EXAMPLE DIRECTIVE USE

• Continuing with the previous example.

• Notice the difference between align and space.

.align 2

.byte 16

.space 3

0x340x10010010

0x100x10010014

0x250x10010018.byte 67

