

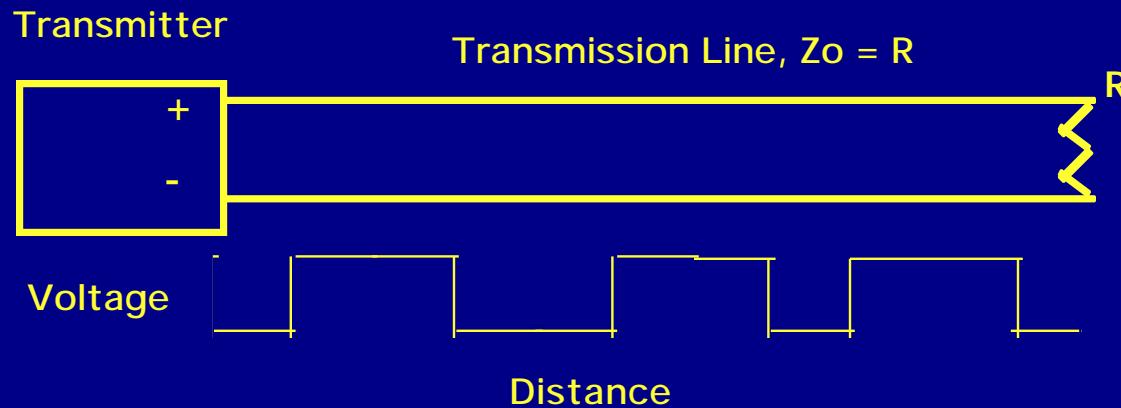
ECE-4074

Web Site <http://www.csc.gatech.edu/~copeland/4074>

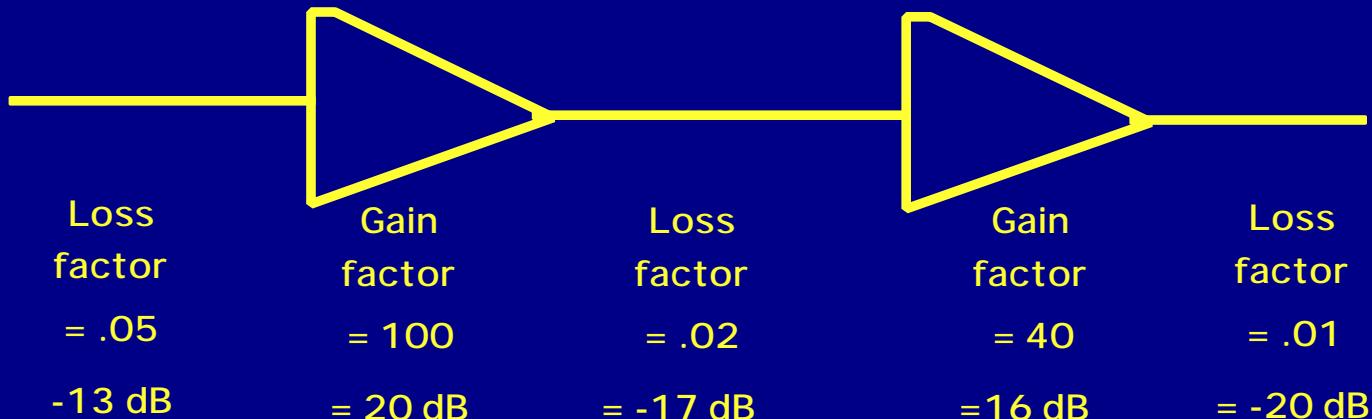
Prof. John A. Copeland
john.copeland@ece.gatech.edu
404 894-5177
Office: GCATT 579

For office visit, email or call me
or drop by during office hours posted on the Web Site

- Framing
- Ratios as Decibels
- Characteristic Impedance
- Scrambling


Appendices 3A-3C, pp 115-120

EE4074.03 v8


Characteristic Impedance

A uniform transmission line will conduct an electrical pulse

- in one direction at a constant speed (usually $\sim 2E8$ m/s)
- without reflection if the end is terminated with $R = Z_0$

$$\text{Decibels} = 10 * \log (\text{Ratio})$$

$$\text{Circuit Gain} =$$

$$\begin{aligned} & .05 \\ & \times 100 \\ & \times .02 \\ & \times 40 \\ & \underline{\times .01} \\ & 0.04 \end{aligned}$$

$$\text{Circuit Gain} =$$

$$\begin{aligned} & -13 \text{ dB} \\ & +20 \text{ dB} \\ & -17 \text{ dB} \\ & +16 \text{ dB} \\ & \underline{-20 \text{ dB}} \\ & -14 \text{ dB} \end{aligned} \quad \begin{aligned} & .05 = 10^{**-1.3} \\ & 100 = 10^{**+2.0} \\ & .02 = 10^{**-1.7} \\ & 40 = 10^{**+1.6} \\ & .01 = 10^{**-2.0} \end{aligned}$$

Decibel Relationships

Ratio	dB	Quick Calculation
1	0	$1 = 10^{0.0}$
1.25	1	$1.25 = 5/4 = 7-6 \text{ dB}$
2	3	$(5/4)^{0.3} = 125/64$
4	6	$2^2 = 3+3 \text{ dB}$
5	7	$10/2 = 10-3 \text{ dB}$
8	9	$2^3 = 3+3+3 \text{ dB}$
10	10	$10^{1.0}$
100	20	$10^{2.0}$
1000	30	$10^{3.0}$
1/R	-D where $R > D$	$\log(1/x) = -\log(x)$
$1+0.25*f$	f	$f < 1$ (fraction)

Memorize the ratios corresponding to 1, 3, and 10 dB, and you can quickly calculate the ratio for any dB.

Bit-Orient Framing

100101111100110100001100101011011000110100011011110011

A stream of 0's and 1's are received. We know it is text data (characters encoded as 8-bit codes). Where are the first bits of a code?

One technique is to use a special 8-bit "flag" code (byte or octet) that contains six "1"s in a row (01111110).

1001 01111110 01001000 01000101 01001100 01001100 01001111 10011
Start H E L L 0

The "flags" "frame" the "data". This type of structure is called a "packet", "cell" or "frame" depending on the protocol.

Bit Stuffing

To prevent a flag-like sequence appearing in the data, the following rule is applied when the frame is formed:

- After five "1"s in a row, an extra zero is "stuffed" into the bit stream (whether the next bit is a "1" or a "zero").

When data is taken out of a frame at the receiving end, the following rule restores the data:

- whenever five "1"s in a row appear, the next bit is discarded.

Data: 01101111011000101111100101000000

Framed Data:

0111110011011110011000101111010010100000001111110

Encoding Rule Violation Framing

In some systems, the transmitter will send a signal that violates an encoding rule to signal the start of a frame. Examples:

Character-Oriented Framing

Some character-oriented protocols need to divide a stream of characters (octets, bytes) into frames. Three codes are used to build frames which are designated:

- "Data Link Escape" or DLE
- "Start Transmission" or STX
- "End Transmission" or ETX

The rules are:

- Frames are started with the two-octets: DLE STX
- Frames are ended with the two octets: DLE ETX

Since all 256 possible 8-bit codes can appear in the data, whenever a DLE octet appears, a second DLE is stuffed into the character stream after it.

Data:

A B DLE C D STX F ETX G H

Framed Data:

DLE STX A B DLE DLE C D STX F ETX G H DLE ETX

Character-Oriented Frame Decode

Decoding rule: whenever a DLE character appears in the incoming character stream, it is interpreted in combination with the next character according to this table:

- DLE STX = Start of Frame (discard, start saving data)
- DLE DLE = Replace with single DLE
- DLE ETX = End of Frame (discard, pass data to higher level)
- DLE [anything else] = coding error.

Framed Data:

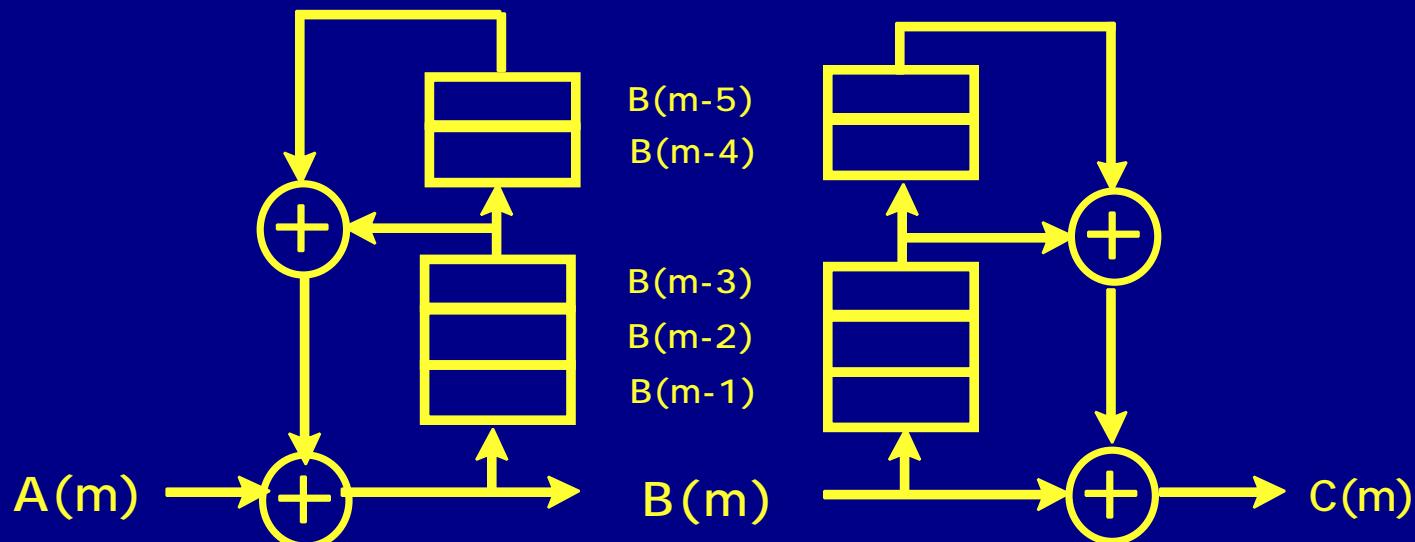
DLE STX A B DLE DLE STX D E F ETX G H DLE ETX
Data: A B DLE STX D E F ETX G H

Scramblers

There are problems when long strings of only "0"s or only "1"s are transmitted. To prevent this a scrambler can be used at the transmitter, and a matching descrambler at the receiver.

Scrambler: $B(m) = A(m) \oplus B(m-3) \oplus B(m-5)$

- where \oplus is the "exclusive or"
- $A(m)$ is the m 'th bit input
- $B(m)$ is the m 'th bit output.


Descrambler: $C(m) = B(m) \oplus B(m-3) \oplus B(m-5)$

- $B(m)$ is the m 'th bit input
- $C(m)$ is the m 'th bit output.

Shift Register Scramblers

Scrambler: $B(m) = A(m) \oplus B(m-3) \oplus B(m-5)$

Descrambler: $C(m) = B(m) \oplus B(m-3) \oplus B(m-5)$

$$C(m) = B(m)$$

$$C(m) = \{A(m) \oplus B(m-3) \oplus B(m-5)\}$$

$$C(m) = A(m) \quad \text{since} \quad X = 0, \quad Y = 0 = Y$$